Wavelet optimized finite difference method using interpolating wavelets for self-adjoint singularly perturbed problems

نویسندگان

  • Vivek Kumar
  • Mani Mehra
چکیده

We design a wavelet optimized finite difference (WOFD) scheme for solving self-adjoint singularly perturbed boundary value problems. The method is based on an interpolating wavelet transform using polynomial interpolation on dyadic grids. Small dissipation of the solution is captured significantly using an adaptive grid. The adaptive feature is performed automatically by thresholding the wavelet coefficients. Numerical examples have been solved and compared with non-standard finite difference schemes in [J.M.S. Lubuma, K.C. Patidar, Uniformly convergent non-standard finite difference methods for self-adjoint singular perturbation problems, J. Comput. Appl. Math. 191 (2006) 228–238]. The proposed method outperforms the non-standard finite difference for studying singular perturbation problems for small dissipations (very small ) and effective grid generation. Therefore, the proposed method is better for studying the more challenging cases of singularly perturbed problems. © 2009 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet optimized finite difference method using interpolating wavelets for solving singularly perturbed problems

A wavelet optimized finite difference (WOFD) method is presented for adaptively solving a class of singularly perturbed elliptic and parabolic problems. The method is based on an interpolating wavelet transform using polynomial interpolation on dyadic grids. Adaptive feature is performed automatically by thresholding the wavelet coefficients. Numerical examples for elliptic and parabolic proble...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

Variable Mesh Finite Difference Method for Self-adjoint Singularly Perturbed Two-point Boundary Value Problems

A numerical method based on finite difference method with variable mesh is given for self-adjoint singularly perturbed two-point boundary value problems. To obtain parameteruniform convergence, a variable mesh is constructed, which is dense in the boundary layer region and coarse in the outer region. The uniform convergence analysis of the method is discussed. The original problem is reduced to...

متن کامل

Numerical method for a system of second order singularly perturbed turning point problems

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

متن کامل

An efficient numerical method for singularly perturbed second order ordinary differential equation

In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009